MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2020

Calculator-free

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 12th June.

Solution	
If $\frac{z}{\sqrt{3}-i} = \frac{1}{\sqrt{3}+i} \implies z = \frac{(\sqrt{3}-i)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)} = \frac{2-2\sqrt{3}i}{3+1} = \frac{1}{2}(1-\sqrt{3}i)$ Hence	
$z = \frac{1}{2} \left(1 - \sqrt{3}i \right)$	
We note that $z = rcis(\theta)$ where $r = 1$ and $\theta = -\pi/3$	-
Mathematical behaviours	Marks
 multiplies fraction by complex conjugate of the denominator 	1
• evaluates <i>z</i> correctly	1
 converts to polar form for modulus and argument 	1+1

Question 2

Question 2(a)

Γ

(9 marks)

(4	marks)

Solution	
The system of equations first reduces to	
x + 1.5y + z = 5	
3x + 4y - z = 4 (*)	
x + y + az = b	
and then to	
x+1.5y+z = 5	
-0.5y - 4z = -11 (**)	
-0.5y + (a-1)z = b-5	
and in turn	
x+1.5y+z = 5	
y + 8z = 22	
(a+3)z = b+6	
Hence there are infinitely many solutions when $a = -3$ and $b = -6$	
Mathematical behaviours	Marks
 eliminates one variable (*) 	1
 eliminates a second variable (**) 	1
 obtains correct values for a and b 	1+1

Question 2(b)

Solution	
There is no solution if	
$a-3$ and $b \neq -6$	
Mathematical behaviours	Marks
• states correct value for <i>a</i>	1
 states correct values for b 	1

Question 2(c)

Solution If a = 2 and b = -5 then 5z = 1 and hence z = 1/5Now y + 8z = 22 so y = 102/5Lastly x + y + 2z = -5 so x = (-102 - 2 - 25)/5 = -129/5Hence $(x, y, z) = \left(-\frac{129}{5}, \frac{102}{5}, \frac{1}{5}\right).$ Mathematical behaviours Marks 1 obtains correct value for z• 1 obtains correct value for y 1 obtains correct value for x•

Question 3

(6 marks)

(3 marks)

Question 3(a)

Solution	
The function $f(x) = \sqrt{4 - 3 - 2x }$ is defined if $4 - 3 - 2x \ge 0$	
If $3-2x=4 \Rightarrow x=-0.5$ If $3-2x=-4 \Rightarrow x=3.5$	
This means that the function is defined for $x \in [-0.5, 3.5]$	
Mathematical behaviours	Marks
• derives the positivity requirement for $4- 3-2x $	1
 evaluates the lower and upper limits of the domain 	1+1

(2 marks)

(3 marks)

Question 3(b)

(3 marks)

Question 4(a)

(5 marks)

Solution	
The sphere is given by	
$x^{2} - 4x + 4 + y^{2} + z^{2} + 10z + 25 = 20 + 4 + 25$	
i.e.	
$(x-2)^2 + y^2 + (z+5)^2 = 7^2$	
which is a sphere centre $(2,0,-5)$ and of radius 7	
Mathematical behaviours	Marks
completes the square	1
 states the correct centre and radius 	1

Question 4(b)

(3 marks)

Solution	
The centre of the sphere C has co-ordinates $(2,0,-5)$ so that	
$\overrightarrow{CA} = (-2, 3, 6)$	
This is normal to the tangent plane so the equation of this plane is of the form	
-2x + 3y + 6z = d	
As A (0,3,1) is on the plane,	
d = 9 + 6 = 15	
Hence required plane is	
-2x + 3y + 6z = 15	
Alternatively this solution could be written in normal form so	
r.(-2,3,6) = 15	
Mathematical behaviours	Marks
• calculates the normal \overrightarrow{CA} correctly	1
 writes down general equation of the plane with the unknown 	1
constant	1
 obtains a correct equation for the tangent plane 	I

Question 5(a)

(5 marks)

(2 marks)

Solution	
Let $z = \alpha + i\beta$ in which case $\overline{z} = \alpha - i\beta$; then $z\overline{z} = (\alpha + i\beta)(\alpha - i\beta) = \alpha^2 + \beta^2 = \alpha^2 + \beta^2$	$ z ^2$
Mathematical behaviours	Marks
 writes down an appropriate form for <i>z</i> and hence <i>z</i> multiplies terms to prove the required result 	1 1

Question 5(b)

ks)
ks)

Solution	
If <i>a</i> and <i>b</i> are complex numbers then part (a) shows that $ a+b ^{2} = (a+b)(\overline{a}+\overline{b}) = a ^{2} + b ^{2} + a\overline{b} + \overline{a}b$ Similarly $ a-b ^{2} = (a-b)(\overline{a}-\overline{b}) = a ^{2} + b ^{2} - a\overline{b} - \overline{a}b$ Adding the results implies that $ a+b ^{2} + a-b ^{2} = 2\{ a ^{2} + b ^{2}\}.$	
Mathematical behaviours	Marks
• derives expression for $ a+b ^2$	1
• derives expression for $ a-b ^2$	1
draws the required conclusion	1

Question 6(a)

The vector equation of the line containing BE is
$r = \overrightarrow{OE} + t\overrightarrow{EB}$
Now $\overrightarrow{OE} = \frac{1}{2}\overrightarrow{OA} = \frac{1}{2}\mathbf{a}$
and $\overrightarrow{EB} = \overrightarrow{OB} - \overrightarrow{OE} = \boldsymbol{b} - \frac{1}{2}\boldsymbol{a}$
so the required equation is
$\boldsymbol{r} = \frac{1}{2}\boldsymbol{a} + t\left(\boldsymbol{b} - \frac{1}{2}\boldsymbol{a}\right) = \frac{1-t}{2}\boldsymbol{a} + t\boldsymbol{b}$

Mathematical behaviours	Marks
 obtains <i>EB</i> correctly derives correct equation 	1 1

Solution

Question 6(b)

(4 marks)

Solution	
$\overrightarrow{OF} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) = \frac{1}{2}(\mathbf{a} + \mathbf{b})$ so the vector equation of the line containing OF is $\mathbf{r}' = \frac{t'}{2}(\mathbf{a} + \mathbf{b})$ Solving $\mathbf{r} = \mathbf{r}'$ gives $\frac{1}{2}\mathbf{a} + t\left(\mathbf{b} - \frac{1}{2}\mathbf{a}\right) = \frac{1-t}{2}\mathbf{a} + t\mathbf{b} = \frac{t'}{2}(\mathbf{a} + \mathbf{b})$ (*) and so $\frac{1-t}{2} = \frac{t'}{2}$ and $t = \frac{t'}{2}$ and so $t = \frac{1}{3}$ and $t' = \frac{2}{3}$ So $\overrightarrow{OC} = \frac{1-1/3}{2}\mathbf{a} + \frac{1}{3}\mathbf{b} = \frac{1}{3}(\mathbf{a} + \mathbf{b})$	
Mathematical behaviours	Marks
 obtains equation of a second median line 	1
 obtains equation (*) (or equivalent) 	1
determines value of t and t'	1
 completes proof in a valid way 	1

(2 marks)

Solution		
First note that		
$-64\sqrt{2}(1+i) = -128 \operatorname{cis}\left(\frac{i\pi}{4}\right) = 2^7 \operatorname{cis}\left(\frac{5i\pi}{4}\right)$		
Then $z^7 = 2^7 cis\left(i\pi\left[2k + \frac{5}{4}\right]\right) \Rightarrow z = 2cis\left(\frac{i\pi}{7}\left[2k + \frac{5}{4}\right]\right)$ for $k = 0$.6	
by de Moivre's th	neorem	
Hence the seven roots are $z = 2cis(i\theta)$ where $\theta = \frac{5\pi}{28}, \frac{13\pi}{28}, \frac{3\pi}{4}, \frac{29\pi}{28}, \frac{37\pi}{28}, \frac{45\pi}{28}, \frac{53\pi}{28}$.		
Restricting the argument to the stated domain leaves		
$_{0}$ 27π 19π 11π 3π 5π 13π and 3π		
$3 = -\frac{1}{28}, -\frac{1}$		
Mathematical behaviours	Marks	
• writes $-64\sqrt{2(1+i)}$ in polar form (1 for modulus, 1 for argument)	1+1	
 uses de Moivre's theorem appropriately 	1	
 writes down the seven required roots (-1 for one mistake) 	2	
 calculates all the arguments so that they lie in the appropriate given 		
range (-1 for one mistake)	2	

(5 marks)

Question 8(a),(b)

Question 8(c)

Solution	
Commencing with the roots we see that as $f(x) = 0$ when $x = -1,1$ and 2 so the	at
$f(x) = a(x+1)^{p} (x-1)^{q} (x-2)^{r}$	
As the function touches the horizontal axis at $x = -1, 2$ then	
$f(x) = a(x+1)^{2}(x-1)(x-2)^{2}$	
To fix the value of <i>a</i> we note that the curve passes through (0,-8) so that $a(1)(-1)(4) = -8 \Rightarrow a = 2$	
Therefore $f(x) = 2(x+1)^2(x-1)(x-2)^2$	
Therefore, the equation of the function is $f(x) = 2(x+1)^2(x-1)(x-2)^2$	
Mathematical behaviours	Marks
• correctly determines the three factors $x+1, x-1$ and $x-2$	1
 identifies the respective powers on the three factors 	1
• uses the point (08) to deduce the value of a	1
a correctly determined $a = 2$	1

• correctly determines a = 2